Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Nutrients ; 15(20)2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37892400

RESUMO

The pathogenesis of obesity and dyslipidemia involves genetic factors, such as polymorphisms related to lipid metabolism alterations predisposing their development. This study aimed to evaluate the effect of a nutrigenetic intervention on the blood lipid levels, body composition, and inflammation markers of adults with obesity and overweight. Eleven genetic variants associated with dyslipidemias in Mexicans were selected, and specific nutrigenetic recommendations for these polymorphisms were found. One hundred and one adults were recruited and assigned to follow either a standard or nutrigenetic diet for eight weeks. Anthropometric, biochemical, body composition, and inflammation markers were evaluated through standardized methods. Weighted genetic risk scores (wGRSs) were computed using the study polymorphisms. After intervention, both diets significantly decreased the anthropometric parameters and body composition (p < 0.05). Only the nutrigenetic diet group showed significant reductions in VLDL-c (p = 0.001), triglycerides (p = 0.002), TG:HDL (p = 0.002), IL-6 (p = 0.002), and TNF-α (p = 0.04). wGRSs had a high impact on the ΔTGs and ΔVLDL-c of both groups (standard diet: ΔTGs: Adj R2 = 0.69, p = 0.03; ΔVLDL-c: Adj R2 = 0.71, p = 0.02; nutrigenetic diet: ΔTGs: Adj R2 = 0.49, p = 0.03 and ΔVLDL-c: R2 = 0.29, p = 0.04). This nutrigenetic intervention improved lipid abnormalities in patients with excessive body weight. Hence, nutrigenetic strategies could be coadjuvant tools and enhance the standard dietary treatment for cardiometabolic diseases.


Assuntos
Nutrigenômica , Sobrepeso , Humanos , Adulto , Sobrepeso/complicações , Obesidade , Peso Corporal , Lipídeos , Inflamação
2.
Molecules ; 28(4)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36838811

RESUMO

Hibiscus sabdariffa possess great versatility to be used as an ingredient for a whole range of products with natural-based ingredients, which are growing in popularity due to the health benefits of bioactive compounds (BC). Therefore, the objective of this study was to characterize the BC content in Hibiscus beverages and to evaluate their in vitro bioaccessibility. Results showed significant differences (p < 0.05) in the total contents of BC prior to the in vitro intestinal digestion. Hibiscus acid was the most abundant compound identified. Thirty-five compounds were identified in the Hibiscus beverage at the initial stage, while a maximum of 15 compounds were quantified in the different fractions of gastrointestinal digestion. After digestion, significant differences were found compared with the initial content of BC. That phenolic acids were the less bioaccessible group, while flavonoids were the most diverse. Principal components analysis showed different clusters and changes in the profiles of BC present at the initial stage and those bioaccessible, showing that intestinal digestion significantly affects the BC profile of the beverage.


Assuntos
Hibiscus , Antioxidantes/análise , Flavonoides/análise , Bebidas/análise , Digestão , Extratos Vegetais
3.
Food Chem ; 400: 134046, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36067696

RESUMO

Psidium guajava L. and Psidium friedrichsthalianum Nied are part of the Psidium species native to America. Nowadays, it is essential to study the phenolic compound (PC) profile and their changes during digestion and the fractions available for absorption. This study aimed to characterize the PC profile in some Psidium species and their bioaccessibility (BA). Fifty-seven compounds were identified, and forty-six belonged to ten different phenolic classes. PC profiles showed significant differences between the species and the intestinal fraction P. friedrichsthalianum Nied. showed the highest PC content, although it mostly belonged to non-extractable polyphenols. This leads to the lowest BA (37%); P. guajava L. 'Morada' showed the highest (47%). Hydroxycinnamic acids were the most stable PC after gastrointestinal digestion. This study showed relevant differences in the PC content and profile of different Psidium species and changes between the PC in the original matrix and those released in the different stages of gastrointestinal digestion.


Assuntos
Psidium , Ácidos Cumáricos , Digestão , Fenóis , Extratos Vegetais
4.
Food Chem (Oxf) ; 5: 100150, 2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36483086

RESUMO

Tejuino, is a Mexican fermented beverage prepared by germination-fermentation or nixtamalization-fermentation (artisanal and commercial mode respectively) of maize. The aim of this study was to evaluate the gut metabolites, volatile, and phenolic compounds (PC) produced by the indigestible fraction (IF) of Tejuino during an in vitro colonic fermentation. Twenty-six PC in the IF were identified; the hydroxycinnamic acids (30-40 %) were the most abundant. In the IF of Tejuino pyrogallol, and urolithins were identified. Some of the representative PC of maize as maysin derivatives (apimaysin and 3-methoxymaysin) (flavonoids). The quantification of acetic and butyric acid become notable after 6 h of the colonic fermentation of IF of Tejuino. Ninety-seven volatile compounds were found, and the PCA shows the predominant compounds as short chain fatty acids, esters of organic acids and indole derivatives. These results suggest that Tejuino could be an important source of metabolites with high biological value.

5.
Front Nutr ; 9: 830283, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35387194

RESUMO

Background: Obesity and dyslipidemias are risk factors for developing cardiovascular diseases, the leading causes of morbidity and mortality worldwide. The pathogenesis of these diseases involves environmental factors, such as nutrition, but other aspects like genetic polymorphisms confer susceptibility to developing obesity and dyslipidemias. In this sense, nutrigenetics is being used to study the influence of genetic variations on the circulating lipid responses promoted by certain nutrients or foods to provide specific dietary strategies considering the genetic factors in personalized nutrition interventions. Objective: To identify throughout a systematic review the potential nutrigenetic recommendations that demonstrate a strong interaction between gene-diet and circulating lipid variations. Methods: This systematic review used the PRISMA-Protocol for manuscript research and preparation using PubMed and ScienceDirect databases. Human studies published in English from January 2010 to December 2020 were included. The main results were outcomes related to gene-diet interactions and plasmatic lipids variation. Results: About 1,110 articles were identified, but only 38 were considered to fulfill the inclusion criteria established based on the reported data. The acquired information was organized based on gene-diet interaction with nutrients and components of the diet and dietary recommendation generated by each interaction: gene-diet interaction with dietary fats, carbohydrates or dietary fiber, gene-diet interaction with nutraceutical or dietary supplementation, and gene-diet interaction with proteins. Conclusion: Findings included in this systematic review indicated that a certain percentage of dietary macronutrients, the consumption of specific amounts of polyunsaturated or monounsaturated fatty acids, as well as the ingestion of nutraceuticals or dietary supplements could be considered as potential strategies for the development of a wide range of nutrigenetic interventions since they have a direct impact on the blood levels of lipids. In this way, specific recommendations were identified as potential tools in developing precision diets and highlighted the importance of personalized nutrition. These recommendations may serve as a possible strategy to implement as dietary tools for the preventive treatment and control alterations in lipid metabolism. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42021248816, identifier [CRD42021248816].

6.
Plant Foods Hum Nutr ; 77(1): 77-82, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35020097

RESUMO

To the best of our knowledge, "sweet mini bell" peppers have not been extensively investigated. In this study, we evaluated the bioaccessible phenolic compounds released during intestinal digestion and identified and quantified the microbial metabolites derived from phenolic compounds bioconversion during the in vitro colonic fermentation. A total of 66 phenolic compounds were determined. The results obtained in this study indicate that hydroxycinnamic acids (22 to 32 mg/100 g dw) and flavonoids (99 to 102 mg/100 g dw) headed by quercetin, luteolin and kaempferol glycosidic derivatives were the main bioaccessible phenolic compounds during in vitro intestinal digestion of mini bell peppers. The yellow variety contained the highest concentration of bioaccessible flavonoids (80 mg/100 g dw). For the first time in mini bell peppers, dihydroferulic acid was detected, in the three varieties studied. 3-(4-hydroxyphenyl)propionic acid was the major metabolite found after 12-24 h fermentation of all samples (44 to 102 µM/L). Further cell culture or in vivo studies are needed to elucidate the biological activities of the phenolic compounds identified in mini bell peppers.


Assuntos
Capsicum , Polifenóis , Biotransformação , Colo , Flavonoides/metabolismo , Fenóis/metabolismo , Polifenóis/metabolismo
7.
Food Chem ; 373(Pt A): 131375, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-34742041

RESUMO

Phenolic compounds (PC), can modulate the immune response. UV-C irradiation, commonly used as a minimal processing method in fresh-foods to reduce the microbial load, increase shelf-life, provide a minimal processing and facilitate the release of PC. This study aimed to evaluate the effect of intestinal (IF) and fermented (FF) fractions of non-irradiated (NIPB) and irradiated (IPB) pineapple snack-bars on the production of nitric oxide (NO), interleukin 6 (IL-6), cyclooxygenase 2 (COX-2), and tumor necrosis factor-alpha (TNF-α) in mice macrophages. IF of NIPB and IPB exerted an immunomodulatory effect by promoting the production of NO (26 pg/mL) in both treatments, COX-2 (438 and 399 pg/mL), and TNF-α (778 and 802 pg/mL) for NIPB and IPB respectively. The TNF-α increased in IF of NIPB and IPB approximately 371 %, and in FF, only increased 132 %. The NO production was not different between IF and FF. COX-2 production was higher in FF.


Assuntos
Ananas , Alimentos Fermentados , Imunomodulação , Animais , Ciclo-Oxigenase 2 , Irradiação de Alimentos , Imunidade , Camundongos , Óxido Nítrico , Lanches , Fator de Necrose Tumoral alfa/genética
9.
Foods ; 10(10)2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34681495

RESUMO

This study aims to analyze the chemical and microbial composition and characterize volatile compounds from the artisanal and commercial Tejuino beverage. For this, eight samples are analyzed (four artisanal and four commercial). The chemical and microbiological quality is determined by standard methods, and volatile compounds are determined by solid-phase microextraction. Overall, the physicochemical composition and microbiological quality are higher for artisanal Tejuino (p < 0.05). The pH values were 3.20 and 3.62, and 0.76 and 0.46 meq of lactic acid for artisanal and commercial Tejuino, respectively. With volatile compounds analyzed, esters, benzenes, and aldehydes were predominant; meanwhile, ethanol was a volatile compound with the highest concentration for all samples. Saccharomyces cerevisiae and Limosilactobacillus fermentum were identified in artisanal Tejuino; yeasts of the Pichia genera and Lactiplantibacillus plantarum, for commercial Tejuino, and Enterococcus genus were identified in both samples. The characterization of both types of Tejuino allows us to update the information available on this important Mexican beverage. In addition, the isolation of lactic acid bacteria, as representative bacteria of both drinks, offers an area of opportunity to know the potential functionality of these bacteria in traditional fermented products.

10.
Food Chem ; 360: 130051, 2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34020365

RESUMO

Two of the most important Mexican plant-foods are tomato (Solanum lycopersicum L.) and husk tomato (Physalis ixocarpa Brot.). In this study three objectives were followed: i) to evaluate the bioaccessible phenolic compounds (PC) in T and HT during upper gastrointestinal digestion, ii) to in vitro ferment the indigestible fractions of the samples to evaluate the short-chain fatty acids (SCFA) production, iii) the microbial metabolites, bioconverted PC and volatile organic compounds (VOCs) generated during the fermentation. Vanillic acid was the most bioaccessible PC and after 48 h, 3-hydroxyphenylacetic acid was the most abundant microbial metabolite identified in both samples. The identification of VOCs belonging to terpenes (and derivatives) group in T and HT can be product of the microbial metabolism of carotenoids. The study shows new knowledge of the in vitro intestinal digestion and fermentation of T and HT final compounds with biological potential which should be evaluated in further studies.


Assuntos
Colo/microbiologia , Ácidos Graxos Voláteis/metabolismo , Fermentação , Frutas/química , Microbioma Gastrointestinal , Fenóis/metabolismo , Disponibilidade Biológica , Carotenoides/metabolismo , Digestão , Solanum lycopersicum , Fenilacetatos/metabolismo , Physalis , Ácido Vanílico/metabolismo , Compostos Orgânicos Voláteis/metabolismo
11.
Food Res Int ; 140: 110069, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33648292

RESUMO

Several studies have related moderate consumption of red wine with prevention of cardiovascular diseases (CVD). According to epidemiological studies, those regions with high consumption of red wine and a Mediterranean diet show a low prevalence of CVD. Such an effect has been attributed to phenolic compounds present in red wines. On the other hand, by-products obtained during winemaking are also a significant source of phenolic compounds but have been otherwise overlooked. The cardioprotective effect of red wine and its byproducts is related to their ability to prevent platelet aggregation, modify the lipid profile, and promote vasorelaxation. Phenolic content and profile seem to play an important role in these beneficial effects. Inhibition of platelet aggregation is dose-dependent and more efficient against ADP. The antioxidant capacity of phenolic compounds from red wine and its by-products, is involved in preventing the generation of ROS and the modification of the lipid profile, to prevent LDL oxidation. Phenolic compounds can also, modulate the activity of specific enzymes to promote NO production and vasorelaxation. Specific phenolic compounds like resveratrol are related to promote NO, and quercetin to inhibit platelet aggregation. Nevertheless, concentration that causes those effects is far from that in red wines. Synergic and additive effects of a mix of phenolic compounds could explain the cardioprotective effects of red wine and its byproducts.


Assuntos
Vitis , Vinho , Antioxidantes , Fenóis/análise , Resveratrol , Vinho/análise
12.
Food Res Int ; 139: 109917, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33509484

RESUMO

Husk tomato (Physalis ixocarpa Brot. ex. Horm) is mainly used in the preparation of many Mexican sauces due to its unique and slightly acidic flavor, both in raw and cooked forms. These sauces also usually contain Serrano hot pepper (Capsicum annuum L), onion (Allium cepa L.), garlic (Allium sativum L.), coriander (Coriandrum sativum L.) and salt. Mexican sauces are a pre-Hispanic staple food, yet there is scarce knowledge on the phenolic compounds (PC) that reach the colon bound to the indigestible fraction (IF) after intestinal digestion. Thus, the aim of the present work was to evaluate the indigestible fraction of two types of Mexican sauces made with cooked and raw husk tomato: cooked green sauce (CGS) and raw green sauce (RGS). IF of CGS and RGS were fermented in the in vitro model of the human colon (TIM-2) to investigate the PC bioconversion by the gut microbiota after 24, 48 and 72 h. PC of the original sauces and their predigested fractions, as well as the formed metabolites were identified and monitored by HPLC-ESI-QToF-MS. Cooking husk tomato significantly increased the total indigestible fraction (TIF), mainly due to its insoluble indigestible fraction (IIF), and diminished PC. Flavonoids (flavonols and flavones) were the most abundant phenolic group in digested sauces followed by capsaicinoids (a characteristic group derived from hot pepper), hydroxycinnamic acids, and hydroxybenzoic acids. The metabolites 3-(ρ-hydroxyphenyl) propionic acid, 3-(3-hydroxyphenyl) propionic acid and 4-hydroxyphenylacetic acid were the most abundant colonic metabolites identified, which are thought to be derived from the biotransformation of flavonoids and hydroxycinnamates. These results are the first obtained on in vitro colonic fermentation of Mexican sauces and should be considered in future studies on the health effects related to consuming this staple food.


Assuntos
Colo , Microbioma Gastrointestinal , Colo/metabolismo , Fermentação , Flavonoides/metabolismo , Humanos , Paladar
13.
Food Res Int ; 139: 109963, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33509513

RESUMO

Gut microbiota bioconversion of polyphenols in predigested mango 'Ataulfo' peel was studied using a validated, dynamic in vitro human colon model (TIM-2) with faecal microbial inoculum. Dried peels were predigested with enzymatic treatment, followed by TIM-2 fermentation (72 h). Samples were taken at 0, 24, 48 and 72 h and analyzed by HPLC-QToF. Derivatives of hydroxyphenylpropionic, hydroxyphenylacetic and hydroxybenzoic acids, as well as, pyrogallol were the main polyphenols identified. These metabolites might derivate from flavonoid (flavanols and flavonols), gallate and gallotannin biotransformation. Despite the high content of ellagic acid in mango peel, low amounts were detected in TIM-2 samples due to transformation into urolythins A and C, mainly. Xanthone and benzophenone derivatives, specific to mango, remained after the colonic biotransformation, contrary to flavonoids, which completely disappeared. In conclusion, microbial-derived metabolites, such as xanthone and benzophenone derivatives, among others, are partially stable after colonic fermentation, and thus have the potential to contribute to mango peel bioactivity.


Assuntos
Microbioma Gastrointestinal , Mangifera , Antioxidantes , Colo/química , Humanos , Polifenóis/análise
14.
Foods ; 9(11)2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33126732

RESUMO

Tomato paste production generates a residue known as tomato pomace, which corresponds to peels and seeds separated during tomato processing. Currently, there is an opportunity to use tomato pomace to obtain a functional extract with antithrombotic properties, such as platelet anti-aggregant activity. The aim of this study was to evaluate the yield and inhibitory activity of different extracts of tomato pomace on in vitro platelet aggregation, comparing this activity with commercial cardioprotective products, and quantify bioactive compounds. Aqueous or ethanolic/water (1:1) extracts of whole tomato pomace, seedless tomato pomace, tomato pomace supplemented with seeds (50% and 20%), and only seeds were obtained with different ultrasound-assisted extraction times. The inhibition of platelet aggregation was evaluated using a lumi-aggregometer. The quantification of bioactive compounds was determined by HPLC-MS. From 5 g of each type of tomato pomace sample, 0.023-0.22 g of a dry extract was obtained for the platelet aggregation assay. The time of sonication and extraction solvent had a significant role in platelet anti-aggregant activity of some extracts respect the control. Thus, the most active extracts decreased adenosine diphosphate (ADP)-induced platelet aggregation from 87 ± 6% (control) to values between 26 ± 6% and 34 ± 2% (p < 0.05). Furthermore, different ultrasound-assisted extraction conditions of tomato pomace fractions had varied concentration of flavonoids and nucleosides, and had an effect on extract yield.

15.
Food Res Int ; 132: 109036, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32331660

RESUMO

Hibiscus sabdariffa (Hb) calyces are a source of dietary fiber (DF) and phenolic compounds. Agave fructans (AF) and oligofructans (OF) are considered as soluble DF. The aim of the study was to investigate changes in gut microbiota upon feeding predigested Hb, AF, OF or Mix (Hb/AF) to a dynamic, validated in vitro model of the human colon (TIM-2), using sequencing of the V3-V4 regions of the 16S rRNA gene. A pooled human fecal microbiota was used. Production of short-chain fatty acids (SCFAs), branched-chain fatty acids (BSCFAs) and ammonia was also assessed. Samples were taken after 0, 24, 48 and 72 h. Principal component (PC) analysis of fermentation metabolites and relative abundance of genera was carried out, and extracted factors were based on eigenvalues >1.0 and explained >60% of variance. Fermentation of samples resulted in different SCFAS concentrations. The highest butyric acid production was on AF and OF, while the molar ratio of SCFAS on Hb was 63:18:18 for acetic, propionic and butyric acid, respectively. BSCFAS were also produced upon feeding the studied substrates, but in much lower concentrations. About 45 bacteria genera were identified and 10 of these were the most abundant changing during the fermentation time, amongst which a high relative abundance in Bifidobacterium, Bacteroides and Catenibacterium, that changed during the fermentation time depending of substrate. Hb feeding after 48 h led to Bifidobacterium being the most abundant genus. Two PCs were identified: after 24 h of fermentation PC1 was highly influenced by Bifidobacterium and Prevotella, which was related with Hb and SIEM feeding. Evaluation of the changes in metabolites and gut microbiota composition during colonic fermentation in a validated in vitro model provides a complete and reliable view of the potential prebiotic effect of different dietary fibers.


Assuntos
Agave/genética , Colo/metabolismo , Frutanos/química , Frutanos/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Hibiscus/química , Adulto , Amônia/metabolismo , Bactérias/classificação , Bactérias/genética , Butiratos/metabolismo , Colo/microbiologia , Fibras na Dieta , Ácidos Graxos Voláteis/metabolismo , Fezes/microbiologia , Fermentação , Humanos , Pessoa de Meia-Idade , Prebióticos/análise , RNA Ribossômico 16S
16.
Int J Food Sci Nutr ; 71(7): 826-838, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32131652

RESUMO

"Serrano" pepper is extensively used in Mexican cuisine. The aim of this study was to identify the bioaccessible phenolic compounds (PC) of "Serrano" pepper as well as short-chain fatty acids (SCFA) produced and PC bioconverted using an in vitro step-wise gastromimetic model of the intestinal digestion and anaerobic fermentation of the isolated indigestible fraction (IF). The anti-topoisomerase activity of the fermented samples was also evaluated. PC bioaccessibility was about 45% in the small intestine. Chlorogenic acid and capsaicin were identified during the intestinal digestion, while quercetin was identified as available to the gut microbiota. After 48-h fermentation, SCFA molar ratio was 77:11:12 for acetic, propionic and butyric acid. The PC identified in IF and after 12 h of fermentation showed anti-topoisomerase activity. A synergistic effect among the PC and gut metabolites mixture was observed, which indicates a possible antiproliferative mechanism that should be tested in further studies.


Assuntos
Capsicum/química , Digestão/fisiologia , Fenóis/química , Fenóis/farmacologia , Inibidores da Topoisomerase/farmacologia , Antioxidantes , Reatores Biológicos , Colo , DNA Topoisomerases/metabolismo , Ácidos Graxos Voláteis/metabolismo , Fermentação , Saccharomyces cerevisiae/enzimologia
17.
Foods ; 9(2)2020 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-31991688

RESUMO

Aqueous and ethanolic extracts of Hibiscus sabdariffa were spray-dried using maltodextrin (MD) and gum arabic (GA) as carrier agents. A Taguchi L8 experimental design with seven variables was implemented. Physicochemical properties in the encapsulates were evaluated by Ultraviolet-Visible (UV-Vis,) X-ray Diffraction (XRD), spectroscopy and gravimetric techniques. Treatments with aqueous extracts showed the highest concentration of total soluble polyphenols (TSP) 32.12-21.23 mg equivalent gallic acid (EAG)/g dry weight (DW), and antioxidant capacity (AOX) in the 2,2-azinobis-3-ethylbenzotiazoline-6-sulfonic acid (ABTS) assay. The best treatment for TSP and AOX was T4: 2.5% Hibiscus w/w, aqueous extract, decoction, extract-to-carrier ratio 1:1 (w/w), proportion to carriers (MD:GA) 80:20 (w/w), 10,000 rpm, 150 °C. The Taguchi L8 design is a tool that allows the use of multiple variables with a low number of treatments that indicate the drying conditions that give the best parameters, focusing mainly on TSP and AOX, also, it is a good alternative for the preservation and stability of the phenolic compoudns in Hibiscus.

18.
Curr Pharm Des ; 25(32): 3434-3456, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31604412

RESUMO

Functional foods have been used worldwide since ancient times, particularly, the prehispanic civilizations used several plants as medicinal foods. Nowadays, many Mexicans populations preserve their traditions and dietary patterns based on corn, beans, besides other endemic vegetables, mainly diverse varieties of chili, tomatoes and other plant-foods. It is well known that each species has a special complex mixture of bioactive compounds (BC) in which each component contributes to its overall bioactivity. These BC are plant metabolites that benefit human health by means of anti-inflammatory, immune-modulatory, and antioxidant effects. However, it becomes bioactive at human body when these BC must undergo diverse intestinal transformations, due to the action of digestive enzymes, but also by the action of microbiota metabolism. Thus, the intestinal microbiota is the key factor in the mediation of the physiological functions of dietary polyphenols. In fact, limited information is available, especially on dietary phytochemicals and metabolism in commonly available Mexican plant-foods. In this review, the bioaccesibility and bioavailability major BC from traditional Mexican plant-foods products and its potential health benefits will be discussed. Besides, we compile the scientific reports and the evidence of the impact of some Mexican plant-foods on the gut microbiota dynamic composition, specific microbial metabolites and its possible contributions to human health.


Assuntos
Alimento Funcional , Microbioma Gastrointestinal , Polifenóis/farmacocinética , Disponibilidade Biológica , Humanos , México , Plantas Comestíveis/química , Verduras
19.
Nutrients ; 11(7)2019 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-31336740

RESUMO

Mango (Mangifera indica L.) is a tropical fruit which is considered to be a source of dietary fiber (DF) and phenolic compounds (PCs). In this study, high DF mango-based fruit bars were developed from whole mango (peel and pulp). The bars were evaluated for their nutritional composition, the bioaccesibility of PCs during gastrointestinal digestion, and the PCs metabolites profile after in vitro colonic fermentation. The amount of DF in a 30 g portion of mango bars was 9.5 g, i.e., 35% of the recommended daily intake. Phenolic acids such as gallic acid; cinnamic acids, such as ferulic, coumaric, and caffeic acids; flavonoids such as quercertin; and xanthones such as mangiferin and mangiferin gallate, were identified as the main PCs in the bars. The antioxidant capacity associated with the PCs profile, together with the high DF content are indicative of the potential functional features of these natural fruit bars. The bioaccesibility of PCs in the mango bar was 53.78%. During fermentation, the PCs were bioconverted mainly to hydroxyphenolic acids and the main short-chain fatty acid produced was acetic acid. The xanthone norathyriol was identified after 12 h of fermentation. This study on the digestion and colonic fermentation of mango-based bars using in vitro models provides hints of the potential physiological behavior of PCs associated with DF, which constitutes relevant information for further development of natural and health-promoting fruit-based bars.


Assuntos
Antioxidantes/química , Fibras na Dieta , Digestão , Frutas , Mangifera , Ácidos Graxos Voláteis , Fermentação , Análise de Alimentos , Manipulação de Alimentos , Humanos , Concentração de Íons de Hidrogênio , Mangifera/química , Paladar
20.
Food Sci Technol Int ; 25(7): 547-561, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31042056

RESUMO

Hibiscus sabdariffa and Camellia sinensis are traditionally consumed as beverages and are good sources of health-promoting phenolic compounds. The objective of this work was to use response surface methodology to develop an optimized functional beverage with high total phenolic content, antioxidant capacity, and acceptable for potential consumers. Optimum infusion conditions were 4.9 g of hibiscus calyces or C. sinensis leaves/100 ml of water at 26 ℃ for 291 min. These conditions yielded a total phenolic content of 14.80 ± 1.4 and 33.02 ± 0.34 mg gallic acid equivalents/100 ml for hibiscus and green tea, respectively. The optimized beverages were combined in a 7:3 (hibiscus:green tea, v/v) ratio; a consumer preference test showed that this combination had an acceptable taste according to untrained panelists. A chromatographic analysis showed that this formulation contained flavonoids, phenolic acids, and anthocyanins as its main components. Our data suggested that hibiscus and green tea phenolic compounds were efficiently extracted using near-ambient temperature water for prolonged times, contrary to routine methods (high temperature, short time). Our method also preserved antioxidant capacity, possibly by avoiding chemical changes/degradation due to high temperatures. This process can be used to produce organoleptically acceptable functional beverages that deliver a varied phenolic compound profile to the consumer.


Assuntos
Bebidas/análise , Camellia sinensis/química , Manipulação de Alimentos/métodos , Hibiscus/química , Compostos Fitoquímicos/análise , Chá/química , Antocianinas/análise , Antioxidantes/análise , Flavonoides/análise , Flores/anatomia & histologia , Ácido Gálico/análise , Fenóis/análise , Extratos Vegetais/química , Folhas de Planta/química , Paladar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...